Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model∗

نویسندگان

  • Chao Yang
  • Xiao-Chuan Cai
چکیده

The cubed-sphere grid of gnomonic type [ 7, 8] is used in this study. The grid is generated by mapping the six faces of an inscribed cube to the sphere surface using gnomonic projection. The six expanded patches are continuously attached together with proper boundary conditions. On each patch, the expressions of the SWEs in local curvilinear coordinates (x, y) ∈ [−π/4, π/4] are identical. When no bottom topography is involved, the SWEs can be written in the following conservative form:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalability Studies of an Implicit Shallow Water Solver for the Rossby-Haurwitz Problem

The scalability of a fully implicit global shallow water solver is studied in this paper. In the solver a conservative second-order finite volume scheme is used to discretize the shallow water equations on a cubed-sphere mesh which is free of pole-singularities. Instead of using the popular explicit or semi-implicit methods in climate modeling, we employ a fully implicit method so that the rest...

متن کامل

A Fully Implicit Domain Decomposition Algorithm for Shallow Water Equations on the Cubed-Sphere

Popular approaches for solving the shallow water equations (SWE) for climate modeling are explicit and semi-implicit methods, both have certain constraints on the time step size. In this paper, we propose and study a fully implicit method which imposes no limit on the time step size, but requires the solution of a large sparse nonlinear system of equations at every time step. The focus of the p...

متن کامل

Newton-krylov-schwarz: an Implicit Solver for Cfd

Newton Krylov methods and Krylov Schwarz domain decomposition methods have begun to become established in computational uid dynamics CFD over the past decade The former employ a Krylov method inside of Newton s method in a Jacobian free manner through directional di erencing The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that ...

متن کامل

Newton-krylov-schwarz Methods in Cfd 1

Newton-Krylov methods are potentially well suited for the implicit solution of nonlinear problems whenever it is unreasonable to compute or store a true Jacobian. Krylov-Schwarz iterative methods are well suited for the parallel implicit solution of multidimensional systems of boundary value problems that arise in CFD. They provide good data locality so that even a high-latency workstation netw...

متن کامل

Newton-krylov-schwarz Methods in Cfd

Newton-Krylov methods are potentially well suited for the implicit solution of nonlinear problems whenever it is unreasonable to compute or store a true Jacobian. Krylov-Schwarz iterative methods are well suited for the parallel implicit solution of multidimensional systems of boundary value problems that arise in CFD. They provide good data locality so that even a high-latency workstation netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011